Plan 9 from Bell Labs’s /usr/web/sources/contrib/lucio/pub/openldap/libraries/libldap_r/tpool.c

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


/* $OpenLDAP: pkg/ldap/libraries/libldap_r/tpool.c,v 1.30.2.19 2007/04/01 09:53:06 hyc Exp $ */
/* This work is part of OpenLDAP Software <http://www.openldap.org/>.
 *
 * Copyright 1998-2007 The OpenLDAP Foundation.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted only as authorized by the OpenLDAP
 * Public License.
 *
 * A copy of this license is available in file LICENSE in the
 * top-level directory of the distribution or, alternatively, at
 * <http://www.OpenLDAP.org/license.html>.
 */

#include "portable.h"

#include <stdio.h>

#include <ac/stdarg.h>
#include <ac/stdlib.h>
#include <ac/string.h>
#include <ac/time.h>
#include <ac/errno.h>

#include "ldap-int.h"
#include "ldap_pvt_thread.h" /* Get the thread interface */
#include "ldap_queue.h"
#define LDAP_THREAD_POOL_IMPLEMENTATION
#include "ldap_thr_debug.h"  /* May rename symbols defined below */

#ifndef LDAP_THREAD_HAVE_TPOOL

typedef enum ldap_int_thread_pool_state_e {
	LDAP_INT_THREAD_POOL_RUNNING,
	LDAP_INT_THREAD_POOL_FINISHING,
	LDAP_INT_THREAD_POOL_STOPPING,
	LDAP_INT_THREAD_POOL_PAUSING
} ldap_int_thread_pool_state_t;

typedef struct ldap_int_thread_key_s {
	void *ltk_key;
	void *ltk_data;
	ldap_pvt_thread_pool_keyfree_t *ltk_free;
} ldap_int_thread_key_t;

/* Max number of thread-specific keys we store per thread.
 * We don't expect to use many...
 */
#define	MAXKEYS	32
#define	LDAP_MAXTHR	1024	/* must be a power of 2 */

static ldap_pvt_thread_t tid_zero;

static struct {
	ldap_pvt_thread_t id;
	ldap_int_thread_key_t *ctx;
} thread_keys[LDAP_MAXTHR];
	

typedef struct ldap_int_thread_ctx_s {
	union {
	LDAP_STAILQ_ENTRY(ldap_int_thread_ctx_s) q;
	LDAP_SLIST_ENTRY(ldap_int_thread_ctx_s) l;
	LDAP_SLIST_ENTRY(ldap_int_thread_ctx_s) al;
	} ltc_next;
	ldap_pvt_thread_start_t *ltc_start_routine;
	void *ltc_arg;
} ldap_int_thread_ctx_t;

struct ldap_int_thread_pool_s {
	LDAP_STAILQ_ENTRY(ldap_int_thread_pool_s) ltp_next;
	ldap_pvt_thread_mutex_t ltp_mutex;
	ldap_pvt_thread_cond_t ltp_cond;
	ldap_pvt_thread_cond_t ltp_pcond;
	LDAP_STAILQ_HEAD(tcq, ldap_int_thread_ctx_s) ltp_pending_list;
	LDAP_SLIST_HEAD(tcl, ldap_int_thread_ctx_s) ltp_free_list;
	LDAP_SLIST_HEAD(tclq, ldap_int_thread_ctx_s) ltp_active_list;
	ldap_int_thread_pool_state_t ltp_state;
	long ltp_max_count;
	long ltp_max_pending;
	long ltp_pending_count;
	long ltp_active_count;
	long ltp_open_count;
	long ltp_starting;
};

static LDAP_STAILQ_HEAD(tpq, ldap_int_thread_pool_s)
	ldap_int_thread_pool_list =
	LDAP_STAILQ_HEAD_INITIALIZER(ldap_int_thread_pool_list);

static ldap_pvt_thread_mutex_t ldap_pvt_thread_pool_mutex;

static void *ldap_int_thread_pool_wrapper( void *pool );

static ldap_pvt_thread_t ldap_int_main_tid;

static ldap_int_thread_key_t ldap_int_main_thrctx[LDAP_MAXTHR];

int
ldap_int_thread_pool_startup ( void )
{
	ldap_int_main_tid = ldap_pvt_thread_self();

	return ldap_pvt_thread_mutex_init(&ldap_pvt_thread_pool_mutex);
}

int
ldap_int_thread_pool_shutdown ( void )
{
	struct ldap_int_thread_pool_s *pool;

	while ((pool = LDAP_STAILQ_FIRST(&ldap_int_thread_pool_list)) != NULL) {
		(ldap_pvt_thread_pool_destroy)(&pool, 0); /* ignore thr_debug macro */
	}
	ldap_pvt_thread_mutex_destroy(&ldap_pvt_thread_pool_mutex);
	return(0);
}

int
ldap_pvt_thread_pool_init (
	ldap_pvt_thread_pool_t *tpool,
	int max_threads,
	int max_pending )
{
	ldap_pvt_thread_pool_t pool;
	int rc;

	*tpool = NULL;
	pool = (ldap_pvt_thread_pool_t) LDAP_CALLOC(1,
		sizeof(struct ldap_int_thread_pool_s));

	if (pool == NULL) return(-1);

	rc = ldap_pvt_thread_mutex_init(&pool->ltp_mutex);
	if (rc != 0)
		return(rc);
	rc = ldap_pvt_thread_cond_init(&pool->ltp_cond);
	if (rc != 0)
		return(rc);
	rc = ldap_pvt_thread_cond_init(&pool->ltp_pcond);
	if (rc != 0)
		return(rc);
	pool->ltp_state = LDAP_INT_THREAD_POOL_RUNNING;
	pool->ltp_max_count = max_threads;
	pool->ltp_max_pending = max_pending;
	LDAP_STAILQ_INIT(&pool->ltp_pending_list);
	LDAP_SLIST_INIT(&pool->ltp_free_list);
	LDAP_SLIST_INIT(&pool->ltp_active_list);
	ldap_pvt_thread_mutex_lock(&ldap_pvt_thread_pool_mutex);
	LDAP_STAILQ_INSERT_TAIL(&ldap_int_thread_pool_list, pool, ltp_next);
	ldap_pvt_thread_mutex_unlock(&ldap_pvt_thread_pool_mutex);

#if 0
	/* THIS WILL NOT WORK on some systems.  If the process
	 * forks after starting a thread, there is no guarantee
	 * that the thread will survive the fork.  For example,
	 * slapd forks in order to daemonize, and does so after
	 * calling ldap_pvt_thread_pool_init.  On some systems,
	 * this initial thread does not run in the child process,
	 * but ltp_open_count == 1, so two things happen: 
	 * 1) the first client connection fails, and 2) when
	 * slapd is kill'ed, it never terminates since it waits
	 * for all worker threads to exit. */

	/* start up one thread, just so there is one. no need to
	 * lock the mutex right now, since no threads are running.
	 */
	pool->ltp_open_count++;

	ldap_pvt_thread_t thr;
	rc = ldap_pvt_thread_create( &thr, 1, ldap_int_thread_pool_wrapper, pool );

	if( rc != 0) {
		/* couldn't start one?  then don't start any */
		ldap_pvt_thread_mutex_lock(&ldap_pvt_thread_pool_mutex);
		LDAP_STAILQ_REMOVE(ldap_int_thread_pool_list, pool, 
			ldap_int_thread_pool_s, ltp_next);
		ldap_pvt_thread_mutex_unlock(&ldap_pvt_thread_pool_mutex);
		ldap_pvt_thread_cond_destroy(&pool->ltp_pcond);
		ldap_pvt_thread_cond_destroy(&pool->ltp_cond);
		ldap_pvt_thread_mutex_destroy(&pool->ltp_mutex);
		LDAP_FREE(pool);
		return(-1);
	}
#endif

	*tpool = pool;
	return(0);
}

#define	TID_HASH(tid, hash) do { unsigned i; \
	unsigned char *ptr = (unsigned char *)&(tid); \
	for (i=0, hash=0; i<sizeof(tid); i++) hash += ptr[i]; } while(0)

int
ldap_pvt_thread_pool_submit (
	ldap_pvt_thread_pool_t *tpool,
	ldap_pvt_thread_start_t *start_routine, void *arg )
{
	struct ldap_int_thread_pool_s *pool;
	ldap_int_thread_ctx_t *ctx;
	int need_thread = 0;
	ldap_pvt_thread_t thr;

	if (tpool == NULL)
		return(-1);

	pool = *tpool;

	if (pool == NULL)
		return(-1);

	ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);
	if ((pool->ltp_state != LDAP_INT_THREAD_POOL_RUNNING &&
		pool->ltp_state != LDAP_INT_THREAD_POOL_PAUSING)
		|| (pool->ltp_max_pending > 0
			&& pool->ltp_pending_count >= pool->ltp_max_pending))
	{
		ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
		return(-1);
	}
	ctx = LDAP_SLIST_FIRST(&pool->ltp_free_list);
	if (ctx) {
		LDAP_SLIST_REMOVE_HEAD(&pool->ltp_free_list, ltc_next.l);
	} else {
		ctx = (ldap_int_thread_ctx_t *) LDAP_MALLOC(
			sizeof(ldap_int_thread_ctx_t));
		if (ctx == NULL) {
			ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
			return(-1);
		}
	}

	ctx->ltc_start_routine = start_routine;
	ctx->ltc_arg = arg;

	pool->ltp_pending_count++;
	LDAP_STAILQ_INSERT_TAIL(&pool->ltp_pending_list, ctx, ltc_next.q);
	if (pool->ltp_state == LDAP_INT_THREAD_POOL_PAUSING) {
		ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
		return(0);
	}
	ldap_pvt_thread_cond_signal(&pool->ltp_cond);
	if (pool->ltp_open_count < pool->ltp_active_count + pool->ltp_pending_count
		&& (pool->ltp_open_count < pool->ltp_max_count ||
			pool->ltp_max_count <= 0 ))
	{
		pool->ltp_open_count++;
		pool->ltp_starting++;
		need_thread = 1;
	}
	ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);

	if (need_thread) {
		int rc;

		ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);

		rc = ldap_pvt_thread_create( &thr, 1,
			ldap_int_thread_pool_wrapper, pool );
		if (rc == 0) {
			int hash;
			pool->ltp_starting--;

			/* assign this thread ID to a key slot; start
			 * at the thread ID itself (mod LDAP_MAXTHR) and
			 * look for an empty slot.
			 */
			TID_HASH(thr, hash);
			for (rc = hash & (LDAP_MAXTHR-1);
				!ldap_pvt_thread_equal(thread_keys[rc].id, tid_zero);
				rc = (rc+1) & (LDAP_MAXTHR-1));
			thread_keys[rc].id = thr;
		} else {
			/* couldn't create thread.  back out of
			 * ltp_open_count and check for even worse things.
			 */
			pool->ltp_open_count--;
			pool->ltp_starting--;
			if (pool->ltp_open_count == 0) {
				/* no open threads at all?!?
				 */
				ldap_int_thread_ctx_t *ptr;
				LDAP_STAILQ_FOREACH(ptr, &pool->ltp_pending_list, ltc_next.q)
					if (ptr == ctx) break;
				if (ptr == ctx) {
					/* no open threads, context not handled, so
					 * back out of ltp_pending_count, free the context,
					 * report the error.
					 */
					LDAP_STAILQ_REMOVE(&pool->ltp_pending_list, ctx, 
						ldap_int_thread_ctx_s, ltc_next.q);
					pool->ltp_pending_count++;
					ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
					LDAP_FREE(ctx);
					return(-1);
				}
			}
			/* there is another open thread, so this
			 * context will be handled eventually.
			 * continue on and signal that the context
			 * is waiting.
			 */
		}
		ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
	}

	return(0);
}

int
ldap_pvt_thread_pool_maxthreads ( ldap_pvt_thread_pool_t *tpool, int max_threads )
{
	struct ldap_int_thread_pool_s *pool;

	if (tpool == NULL)
		return(-1);

	pool = *tpool;

	if (pool == NULL)
		return(-1);

	ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);
	pool->ltp_max_count = max_threads;
	ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
	return(0);
}

int
ldap_pvt_thread_pool_backload ( ldap_pvt_thread_pool_t *tpool )
{
	struct ldap_int_thread_pool_s *pool;
	int count;

	if (tpool == NULL)
		return(-1);

	pool = *tpool;

	if (pool == NULL)
		return(0);

	ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);
	count = pool->ltp_pending_count + pool->ltp_active_count;
	ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
	return(count);
}

int
ldap_pvt_thread_pool_destroy ( ldap_pvt_thread_pool_t *tpool, int run_pending )
{
	struct ldap_int_thread_pool_s *pool, *pptr;
	ldap_int_thread_ctx_t *ctx;

	if (tpool == NULL)
		return(-1);

	pool = *tpool;

	if (pool == NULL) return(-1);

	ldap_pvt_thread_mutex_lock(&ldap_pvt_thread_pool_mutex);
	LDAP_STAILQ_FOREACH(pptr, &ldap_int_thread_pool_list, ltp_next)
		if (pptr == pool) break;
	if (pptr == pool)
		LDAP_STAILQ_REMOVE(&ldap_int_thread_pool_list, pool,
			ldap_int_thread_pool_s, ltp_next);
	ldap_pvt_thread_mutex_unlock(&ldap_pvt_thread_pool_mutex);

	if (pool != pptr) return(-1);

	ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);
	pool->ltp_state = run_pending
		? LDAP_INT_THREAD_POOL_FINISHING
		: LDAP_INT_THREAD_POOL_STOPPING;

	if ( pool->ltp_open_count ) {
		ldap_pvt_thread_cond_broadcast(&pool->ltp_cond);
		ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex);
	}
	ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);

	while ((ctx = LDAP_STAILQ_FIRST(&pool->ltp_pending_list)) != NULL)
	{
		LDAP_STAILQ_REMOVE_HEAD(&pool->ltp_pending_list, ltc_next.q);
		LDAP_FREE(ctx);
	}

	while ((ctx = LDAP_SLIST_FIRST(&pool->ltp_free_list)) != NULL)
	{
		LDAP_SLIST_REMOVE_HEAD(&pool->ltp_free_list, ltc_next.l);
		LDAP_FREE(ctx);
	}

	ldap_pvt_thread_cond_destroy(&pool->ltp_pcond);
	ldap_pvt_thread_cond_destroy(&pool->ltp_cond);
	ldap_pvt_thread_mutex_destroy(&pool->ltp_mutex);
	LDAP_FREE(pool);
	return(0);
}

static void *
ldap_int_thread_pool_wrapper ( 
	void *xpool )
{
	struct ldap_int_thread_pool_s *pool = xpool;
	ldap_int_thread_ctx_t *ctx;
	ldap_int_thread_key_t ltc_key[MAXKEYS];
	ldap_pvt_thread_t tid;
	int i, keyslot, hash;

	if (pool == NULL)
		return NULL;

	for ( i=0; i<MAXKEYS; i++ ) {
		ltc_key[i].ltk_key = NULL;
	}

	tid = ldap_pvt_thread_self();

	ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);

	/* store pointer to our keys */
	TID_HASH(tid, hash);
	for (i = hash & (LDAP_MAXTHR-1);
				!ldap_pvt_thread_equal(thread_keys[i].id, tid);
				i = (i+1) & (LDAP_MAXTHR-1));
	thread_keys[i].ctx = ltc_key;
	keyslot = i;

	while (pool->ltp_state != LDAP_INT_THREAD_POOL_STOPPING) {
		ctx = LDAP_STAILQ_FIRST(&pool->ltp_pending_list);
		if (ctx) {
			LDAP_STAILQ_REMOVE_HEAD(&pool->ltp_pending_list, ltc_next.q);
		} else {
			if (pool->ltp_state == LDAP_INT_THREAD_POOL_FINISHING)
				break;
			if (pool->ltp_max_count > 0
				&& pool->ltp_open_count > pool->ltp_max_count)
			{
				/* too many threads running (can happen if the
				 * maximum threads value is set during ongoing
				 * operation using ldap_pvt_thread_pool_maxthreads)
				 * so let this thread die.
				 */
				break;
			}

			/* we could check an idle timer here, and let the
			 * thread die if it has been inactive for a while.
			 * only die if there are other open threads (i.e.,
			 * always have at least one thread open).  the check
			 * should be like this:
			 *   if (pool->ltp_open_count > 1 && pool->ltp_starting == 0)
			 *       check timer, leave thread (break;)
			 *
			 * Just use pthread_cond_timedwait if we want to
			 * check idle time.
			 */

			if (pool->ltp_state == LDAP_INT_THREAD_POOL_RUNNING
				|| pool->ltp_state == LDAP_INT_THREAD_POOL_PAUSING)
			{
				ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex);
			}

			continue;
		}

		pool->ltp_pending_count--;

		LDAP_SLIST_INSERT_HEAD(&pool->ltp_active_list, ctx, ltc_next.al);
		pool->ltp_active_count++;
		ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);

		ctx->ltc_start_routine(ltc_key, ctx->ltc_arg);

		ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);
		LDAP_SLIST_REMOVE(&pool->ltp_active_list, ctx,
			ldap_int_thread_ctx_s, ltc_next.al);
		LDAP_SLIST_INSERT_HEAD(&pool->ltp_free_list, ctx, ltc_next.l);
		pool->ltp_active_count--;

		if (pool->ltp_state == LDAP_INT_THREAD_POOL_PAUSING) {
			if (pool->ltp_active_count < 2) {
				ldap_pvt_thread_cond_signal(&pool->ltp_pcond);
			}
			ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex);
		}
	}

	ldap_pvt_thread_pool_context_reset( ltc_key );

	thread_keys[keyslot].ctx = NULL;
	thread_keys[keyslot].id = tid_zero;

	pool->ltp_open_count--;

	/* let pool_destroy know we're all done */
	if (pool->ltp_open_count < 1)
		ldap_pvt_thread_cond_signal(&pool->ltp_cond);

	ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);

	ldap_pvt_thread_exit(NULL);
	return(NULL);
}

int
ldap_pvt_thread_pool_pause ( 
	ldap_pvt_thread_pool_t *tpool )
{
	struct ldap_int_thread_pool_s *pool;

	if (tpool == NULL)
		return(-1);

	pool = *tpool;

	if (pool == NULL)
		return(0);

	ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);

	/* If someone else has already requested a pause, we have to wait */
	while (pool->ltp_state == LDAP_INT_THREAD_POOL_PAUSING) {
		pool->ltp_pending_count++;
		pool->ltp_active_count--;
		ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex);
		pool->ltp_pending_count--;
		pool->ltp_active_count++;
	}
	/* Wait for everyone else to finish */
	pool->ltp_state = LDAP_INT_THREAD_POOL_PAUSING;
	while (pool->ltp_active_count > 1) {
		ldap_pvt_thread_cond_wait(&pool->ltp_pcond, &pool->ltp_mutex);
	}
	ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
	return(0);
}

int
ldap_pvt_thread_pool_resume ( 
	ldap_pvt_thread_pool_t *tpool )
{
	struct ldap_int_thread_pool_s *pool;

	if (tpool == NULL)
		return(-1);

	pool = *tpool;

	if (pool == NULL)
		return(0);

	ldap_pvt_thread_mutex_lock(&pool->ltp_mutex);

	pool->ltp_state = LDAP_INT_THREAD_POOL_RUNNING;
	ldap_pvt_thread_cond_broadcast(&pool->ltp_cond);
	ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex);
	return(0);
}

int ldap_pvt_thread_pool_getkey(
	void *xctx,
	void *key,
	void **data,
	ldap_pvt_thread_pool_keyfree_t **kfree )
{
	ldap_int_thread_key_t *ctx = xctx;
	int i;

	if ( !ctx || !data ) return EINVAL;

	for ( i=0; i<MAXKEYS && ctx[i].ltk_key; i++ ) {
		if ( ctx[i].ltk_key == key ) {
			*data = ctx[i].ltk_data;
			if ( kfree ) *kfree = ctx[i].ltk_free;
			return 0;
		}
	}
	return ENOENT;
}

int ldap_pvt_thread_pool_setkey(
	void *xctx,
	void *key,
	void *data,
	ldap_pvt_thread_pool_keyfree_t *kfree )
{
	ldap_int_thread_key_t *ctx = xctx;
	int i;

	if ( !ctx || !key ) return EINVAL;

	for ( i=0; i<MAXKEYS; i++ ) {
		if (( data && !ctx[i].ltk_key ) || ctx[i].ltk_key == key ) {
			if ( data || kfree ) {
				ctx[i].ltk_key = key;
				ctx[i].ltk_data = data;
				ctx[i].ltk_free = kfree;
			} else {
				int j;
				for ( j=i+1; j<MAXKEYS; j++ )
					if ( !ctx[j].ltk_key ) break;
				j--;
				if ( j != i ) {
					ctx[i].ltk_key = ctx[j].ltk_key;
					ctx[i].ltk_data = ctx[j].ltk_data;
					ctx[i].ltk_free = ctx[j].ltk_free;
				}
				ctx[j].ltk_key = NULL;
				ctx[j].ltk_data = NULL;
				ctx[j].ltk_free = NULL;
			}
			return 0;
		}
	}
	return ENOMEM;
}

/* Free all elements with this key, no matter which thread they're in.
 * May only be called while the pool is paused.
 */
void ldap_pvt_thread_pool_purgekey( void *key )
{
	int i, j;
	ldap_int_thread_key_t *ctx;

	for ( i=0; i<LDAP_MAXTHR; i++ ) {
		if ( thread_keys[i].ctx ) {
			ctx = thread_keys[i].ctx;
			for ( j=0; j<MAXKEYS; j++ ) {
				if ( ctx[j].ltk_key == key ) {
					if (ctx[j].ltk_free)
						ctx[j].ltk_free( ctx[j].ltk_key, ctx[j].ltk_data );
					ctx[j].ltk_key = NULL;
					ctx[j].ltk_free = NULL;
					break;
				}
			}
		}
	}
}

/*
 * This is necessary if the caller does not have access to the
 * thread context handle (for example, a slapd plugin calling
 * slapi_search_internal()). No doubt it is more efficient to
 * for the application to keep track of the thread context
 * handles itself.
 */
void *ldap_pvt_thread_pool_context( )
{
	ldap_pvt_thread_t tid;
	int i, hash;

	tid = ldap_pvt_thread_self();
	if ( ldap_pvt_thread_equal( tid, ldap_int_main_tid ))
		return ldap_int_main_thrctx;

	TID_HASH( tid, hash );
	for (i = hash & (LDAP_MAXTHR-1);
		!ldap_pvt_thread_equal(thread_keys[i].id, tid_zero) &&
		!ldap_pvt_thread_equal(thread_keys[i].id, tid);
		i = (i+1) & (LDAP_MAXTHR-1));

	return thread_keys[i].ctx;
}

void ldap_pvt_thread_pool_context_reset( void *vctx )
{
	ldap_int_thread_key_t *ctx = vctx;
	int i;

	for ( i=MAXKEYS-1; i>=0; i--) {
		if ( ctx[i].ltk_key == NULL )
			continue;
		if ( ctx[i].ltk_free )
			ctx[i].ltk_free( ctx[i].ltk_key, ctx[i].ltk_data );
		ctx[i].ltk_key = NULL;
	}
}
#endif /* LDAP_THREAD_HAVE_TPOOL */

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.