Plan 9 from Bell Labs’s /usr/web/sources/contrib/steve/root/sys/src/cmd/graphviz/dotneato/dotgen/rank.c

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


/*
    This software may only be used by you under license from AT&T Corp.
    ("AT&T").  A copy of AT&T's Source Code Agreement is available at
    AT&T's Internet website having the URL:
    <http://www.research.att.com/sw/tools/graphviz/license/source.html>
    If you received this software without first entering into a license
    with AT&T, you have an infringing copy of this software and cannot use
    it without violating AT&T's intellectual property rights.
*/
#pragma prototyped

/*
 * Rank the nodes of a directed graph, subject to user-defined
 * sets of nodes to be kept on the same, min, or max rank.
 * The temporary acyclic fast graph is constructed and ranked
 * by a network-simplex technique.  Then ranks are propagated
 * to non-leader nodes and temporary edges are deleted.
 * Leaf nodes and top-level clusters are left collapsed, though.
 * Assigns global minrank and maxrank of graph and all clusters.
 *
 * TODO: safety code.  must not be in two clusters at same level.
 *  must not be in same/min/max/rank and a cluster at the same time.
 *  watch out for interactions between leaves and clusters.
 */

#include	"dot.h"


void dot_rank(graph_t* g)
{
	edgelabel_ranks(g);
	collapse_sets(g);
	/*collapse_leaves(g);*/
	class1(g);
	minmax_edges(g);
	decompose(g,0);
	acyclic(g);
	rank1(g);
	expand_ranksets(g);
	cleanup1(g);
}

/* When there are edge labels, extra ranks are reserved here for the virtual
 * nodes of the labels.  This is done by doubling the input edge lengths.
 * The input rank separation is adjusted to compensate.
 */
void edgelabel_ranks(graph_t* g)
{
	node_t		*n;
	edge_t		*e;

	if (GD_has_edge_labels(g)) {
		for (n = agfstnode(g); n; n = agnxtnode(g,n))
			for (e = agfstout(g,n); e; e = agnxtout(g,e))
				ED_minlen(e) *= 2;
		GD_ranksep(g) = (GD_ranksep(g)  + 1) / 2;
	}
}

/* Run the network simplex algorithm on each component. */
void rank1(graph_t* g)
{
	int			maxiter = MAXINT;
	int			c;
	char		*s;

	if ((s = agget(g,"nslimit1")))
		maxiter = atof(s) * agnnodes(g);
	for (c = 0; c < GD_comp(g).size; c++) {
		GD_nlist(g) = GD_comp(g).list[c];
		rank(g,(GD_n_cluster(g) == 0?1:0),maxiter);	/* TB balance */
	}
}

int is_cluster(graph_t* g)
{
	return (strncmp(g->name,"cluster",7) == 0);
}

int rank_set_class(graph_t* g)
{
	static char	*name[] = {"same","min","source","max","sink",NULL};
	static int	class[] = {SAMERANK,MINRANK,SOURCERANK,MAXRANK,SINKRANK,0};
	int		val;

	if (is_cluster(g)) return CLUSTER;
	val = maptoken(agget(g,"rank"),name,class);
	GD_set_type(g) = val;
	return val;
}

/* Execute union commands for "same rank" subgraphs and clusters. */
void collapse_sets(graph_t* g)
{
	int			c;
	graph_t		*mg,*subg;
	node_t		*mn,*n;
	edge_t		*me;

	mg = g->meta_node->graph;
	for (me = agfstout(mg,g->meta_node); me; me = agnxtout(mg,me)) {
		mn = me->head;
		subg = agusergraph(mn);

		c = rank_set_class(subg);
		if (c) {
			if ((c == CLUSTER) && CL_type == LOCAL) collapse_cluster(g,subg);
			else collapse_rankset(g,subg,c);
		}

		/* mark nodes with ordered edges so their leaves are not collapsed */
		if (agget(subg,"ordering"))
			for (n = agfstnode(subg); n; n = agnxtnode(subg,n)) ND_order(n) = 1;
	}
}

/* Merge the nodes of a min, max, or same rank set. */
void collapse_rankset(graph_t *g, graph_t *subg, int kind)
{
	node_t	*u,*v;

	u = v = agfstnode(subg);
	if (u) {
		ND_ranktype(u) = kind;
		while ((v = agnxtnode(subg,v))) {
			UF_union(u,v);
			ND_ranktype(v) = ND_ranktype(u);
		}
		switch (kind) {
		case MINRANK: case SOURCERANK:
			if (GD_minset(g) == NULL) GD_minset(g) = u;
			else GD_minset(g) = UF_union(GD_minset(g),u);
			break;
		case MAXRANK: case SINKRANK:
			if (GD_maxset(g) == NULL) GD_maxset(g) = u;
			else GD_maxset(g) = UF_union(GD_maxset(g),u);
			break;
		}
		switch (kind) {
			case SOURCERANK: GD_minset(g)->u.ranktype = kind; break;
			case SINKRANK: GD_maxset(g)->u.ranktype = kind; break;
		}
	}
}

node_t* merge_leaves(graph_t *g, node_t *cur, node_t *new)
{
	node_t	*rv;

	if (cur == NULL) rv = new;
	else {
		rv = UF_union(cur,new);
		ND_ht_i(rv) = MAX(ND_ht_i(cur),ND_ht_i(new));
		ND_lw_i(rv) = ND_lw_i(cur) + ND_lw_i(new) + GD_nodesep(g)/2;
		ND_rw_i(rv) = ND_rw_i(cur) + ND_rw_i(new) + GD_nodesep(g)/2;
	}
	return rv;
}

void potential_leaf(graph_t* g, edge_t* e, node_t* leaf)
{
	node_t		*par;

	if ((ED_tail_port(e).p.x) || (ED_head_port(e).p.x)) return;
	if ((ED_minlen(e) != 1) || (ND_order(e->tail) > 0)) return;
	par = ((leaf != e->head)? e->head : e->tail);
	ND_ranktype(leaf) = LEAFSET;
	if (par == e->tail) GD_outleaf(par) = merge_leaves(g,GD_outleaf(par),leaf);
	else GD_inleaf(par) = merge_leaves(g,GD_inleaf(par),leaf);
}

void collapse_leaves(graph_t* g)
{
	node_t		*n;
	edge_t		*e;

	for (n = agfstnode(g); n; n = agnxtnode(g,n)) {

		/* consider n as a potential leaf of some other node. */
		if ((ND_ranktype(n) != NOCMD) || (ND_order(n))) continue;
		if (agfstout(g,n) == NULL) {
			if ((e = agfstin(g,n)) && (agnxtin(g,e) == NULL)) {
				potential_leaf(g,e,n);
				continue;
			}
		}
		if (agfstin(g,n) == NULL) {
			if ((e = agfstout(g,n)) && (agnxtout(g,e) == NULL)) {
				potential_leaf(g,e,n);
				continue;
			}
		}
	}
}

/* To ensure that min and max rank nodes always have the intended rank
 * assignment, reverse any incompatible edges.
 */
void minmax_edges(graph_t* g)
{
	node_t	*n;
	edge_t	*e;
	int		srclen,sinklen;

	srclen = sinklen = 0;
	if ((GD_maxset(g) == NULL) && (GD_minset(g) == NULL)) return;
	if ( GD_minset(g) != NULL ) GD_minset(g) = UF_find(GD_minset(g));
	if ( GD_maxset(g) != NULL ) GD_maxset(g) = UF_find(GD_maxset(g));

	if ((n = GD_maxset(g))) {
		sinklen = (GD_maxset(g)->u.ranktype == SINKRANK);
		while ((e = ND_out(n).list[0])) {
			assert(e->head == UF_find(e->head));
			reverse_edge(e);
		}
	}
	if ((n = GD_minset(g))) {
		srclen = (GD_minset(g)->u.ranktype == SOURCERANK);
		while ((e = ND_in(n).list[0])) {
			assert(e->tail == UF_find(e->tail));
			reverse_edge(e);
		}
	}

	for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
		if (n != UF_find(n)) continue;
		if ((ND_out(n).size == 0) && GD_maxset(g) && (n != GD_maxset(g)))
			virtual_edge(n,GD_maxset(g),NULL)->u.minlen = sinklen;
		if ((ND_in(n).size == 0) && GD_minset(g) && (n != GD_minset(g)))
			virtual_edge(GD_minset(g),n,NULL)->u.minlen = srclen;
	}
}

/*
 * A cluster is collapsed in three steps.
 * 1) The nodes of the cluster are ranked locally.
 * 2) The cluster is collapsed into one node on the least rank.
 * 3) In class1(), any inter-cluster edges are converted using
 *    the "virtual node + 2 edges" trick.
 */
void collapse_cluster(graph_t *g, graph_t *subg)
{
	if (GD_cluster_was_collapsed(subg)) return;
	GD_cluster_was_collapsed(subg) = TRUE;
	node_induce(g,subg);
	if (agfstnode(subg) == NULL) return;
	make_new_cluster(g,subg);
	if (CL_type == LOCAL) {
		dot_rank(subg);
		cluster_leader(subg);
	}
	else scan_ranks(subg);
}

int
make_new_cluster(graph_t *g, graph_t *subg)
{
	int 	cno;
	cno = ++(GD_n_cluster(g));
	GD_clust(g) = ZALLOC(cno+1,GD_clust(g),graph_t*,GD_n_cluster(g));
	GD_clust(g)[cno] = subg;
	do_graph_label(subg);
	return cno;
}

void node_induce(graph_t *par, graph_t *g)
{
	node_t		*n,*nn;
	edge_t		*e;
	int			i;

	/* enforce that a node is in at most one cluster at this level */
	for (n = agfstnode(g); n; n = nn) {
		nn = agnxtnode(g,n);
		if (ND_ranktype(n)) {agdelete(g,n); continue;}
		for (i = 1; i < GD_n_cluster(par); i++)
			if (agcontains(GD_clust(par)[i],n)) break;
		if (i < GD_n_cluster(par)) agdelete(g,n);
		ND_clust(n) = NULL;
	}

	for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
		for (e = agfstout(g->root,n); e; e = agnxtout(g->root,e)) {
			if (agcontains(g,e->head)) aginsert(g,e);
		}
	}
}

void cluster_leader(graph_t* clust)
{
	node_t		*leader,*n;
	int			maxrank = 0;

	/* find number of ranks and select a leader */
	leader = NULL;
	for (n = GD_nlist(clust); n; n = ND_next(n)) {
		if ((ND_rank(n) == 0) && (ND_node_type(n) == NORMAL)) leader = n;
		if (maxrank < ND_rank(n)) maxrank = ND_rank(n);
	}
	assert(leader != NULL);
	GD_leader(clust) = leader;

	for (n = agfstnode(clust); n; n = agnxtnode(clust,n)) {
		assert ((ND_UF_size(n) <= 1) || (n == leader));
		UF_union(n,leader);
		ND_ranktype(n) = CLUSTER;
	}
}

/* 
 * Assigns ranks of non-leader nodes.
 * Expands same, min, max rank sets.
 * Leaf sets and clusters remain merged.
 * Sets minrank and maxrank appropriately.
 */
void expand_ranksets(graph_t* g)
{
	int			c;
	node_t		*n,*leader;

	if ((n = agfstnode(g))) {
		GD_minrank(g) = MAXSHORT;
		GD_maxrank(g) = -1;
		while (n) {
			leader = UF_find(n);
			/* The following works because ND_rank(n) == 0 if n is not in a
			 * cluster, and ND_rank(n) = the local rank offset if n is in
			 * a cluster. */
			if (leader != n) ND_rank(n) += ND_rank(leader);

			if (GD_maxrank(g) < ND_rank(n)) GD_maxrank(g) = ND_rank(n);
			if (GD_minrank(g) > ND_rank(n)) GD_minrank(g) = ND_rank(n);

			if (ND_ranktype(n) && (ND_ranktype(n) != LEAFSET))
					UF_singleton(n);
			n = agnxtnode(g,n);
		}
		if (g == g->root) {
			if (CL_type == LOCAL) {
				for (c = 1; c <= GD_n_cluster(g); c++)
					set_minmax(GD_clust(g)[c]);
			}
			else {
				find_clusters(g);
			}
		}
	}
	else {
		GD_minrank(g) = GD_maxrank(g) = 0;
	}
}

void renewlist(elist* L)
{
	int		i;
	for (i = L->size; i >= 0; i--) L->list[i] = NULL;
	L->size = 0;
}

void cleanup1(graph_t* g)
{
	node_t		*n;
	edge_t		*e, *f;
	int			c;

	for (c = 0; c < GD_comp(g).size; c++) {
		GD_nlist(g) = GD_comp(g).list[c];
		for (n = GD_nlist(g); n; n = ND_next(n)) {
			renewlist(&ND_in(n));
			renewlist(&ND_out(n));
			ND_mark(n) = FALSE;
		}
	}
	for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
		for (e = agfstout(g,n); e; e = agnxtout(g,e)) {
			f = ED_to_virt(e);
			if (f && (e == ED_to_orig(f))) free(f);
			ED_to_virt(e) = NULL;
		}
	}
	free(GD_comp(g).list);
	GD_comp(g).list = NULL;
	GD_comp(g).size = 0;
}

void set_minmax(graph_t* g)
{
	int		c;

	GD_minrank(g) += GD_leader(g)->u.rank;
	GD_maxrank(g) += GD_leader(g)->u.rank;
	for (c = 1; c <= GD_n_cluster(g); c++) set_minmax(GD_clust(g)[c]);
}

void scan_ranks(graph_t* g)
{
	node_t		*n,*leader=NULL;
	GD_minrank(g) = MAXSHORT;
	GD_maxrank(g) = -1;
	for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
		if (GD_maxrank(g) < ND_rank(n)) GD_maxrank(g) = ND_rank(n);
		if (GD_minrank(g) > ND_rank(n)) GD_minrank(g) = ND_rank(n);
		if (leader == NULL) leader = n;
		else { if (ND_rank(n) < ND_rank(leader)) leader = n; }
	}
	GD_leader(g) = leader;
}

void find_clusters(graph_t* g)
{
	graph_t		*mg,*subg;
	node_t		*mn;
	edge_t		*me;

	mg = g->meta_node->graph;
	for (me = agfstout(mg,g->meta_node); me; me = agnxtout(mg,me)) {
		mn = me->head;
		subg = agusergraph(mn);

		if (GD_set_type(subg) == CLUSTER) collapse_cluster(g,subg);
	}
}

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.